Studying the sensitivity of weight perturbation in neural networks and its impacts on model performance, including generalization and robustness, is an active research topic due to its implications on a wide range of machine learning tasks such as model compression, generalization gap assessment, and adversarial attacks. In this paper, we provide the first integral study and analysis for feed-forward neural networks in terms of the robustness in pairwise class margin and its generalization behavior under weight perturbation. We further design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations. Empirical experiments are conducted to validate our theoretical analysis. Our results offer fundamental insights for characterizing the generalization and robustness of neural networks against weight perturbations.
翻译:研究神经网络重量扰动的敏感性及其对模型性能的影响,包括一般化和稳健性,是一个积极的研究专题,因为它对诸如模型压缩、一般化差距评估和对抗性攻击等一系列广泛的机器学习任务具有影响。在本文件中,我们从双向级差的稳健性及其在重量扰动下的一般化行为的角度,为进食向神经网络提供了第一份综合研究和分析。我们进一步设计了一个新的理论驱动的损失功能,用于针对重量扰动对可普及和强大的神经网络进行培训。我们进行了经验实验,以验证我们的理论分析。我们的结果为神经网络相对于重量扰动的一般化和稳健性的特点提供了基本见解。