Many modern high-dimensional regression applications involve testing whether a large set of predictors jointly affect an outcome of interest. Methods that target sparse alternatives, such as Tukey's Higher Criticism, require that predictors follow an orthogonal design, and attempts to generalise these approaches to non-orthogonal designs have yet to yield powerful tests. We propose two new procedures. The first, \emph{R\'enyi Distillation} (RD), judiciously introduces noise into the observed outcomes vector assuming a sparse alternative to obtain mutually independent p-values, each measuring the significance of a given predictor. The second, the \emph{R\'enyi outlier test}, is a global test that achieves similar power to Higher Criticism but which can be calculated cheaply and exactly deep into the tail even when the number of hypotheses is very large. In simulation, we demonstrate how the combination of these two procedures yields a scalable approah for non-orthogonal designs that maintains power under sparse alternatives. We also briefly discuss the potential of RD for tackling sparse variable selection and prediction problems.
翻译:许多现代高维回归应用包括测试一大批预测器是否共同影响一个引人注意的结果。针对诸如Tukey的高级批评论等稀疏替代物的方法要求预测器采用正方形设计,试图将这些方法推广到非正方形设计尚未产生强大的测试。我们建议了两个新程序。第一个程序是:\emph{R\'enyi蒸馏}(RD),明智地将噪音引入观察到的结果矢量,假设一种稀有的替代物可以获取相互独立的p-价值,每个衡量给定预测器的重要性。第二个方法是:\emph{R\'enyier 外部测试},它要求预测器采用类似于高正方形设计的方法,试图将这些方法推广到非正方形设计中,但即使在假设数量非常大的情况下,也可以廉价和完全深入地计算到尾部。在模拟中,我们演示这两种程序的组合如何产生可伸缩的非正方形设计,以维持稀少的替代物下的力量。我们还简要地讨论了RD在解决微变数选择和预测问题方面的潜力。