Deep neural networks are vulnerable to adversarial attacks. We consider adversarial defense in the case of zero-shot image classification setting, which has rarely been explored because both adversarial defense and zero-shot learning are challenging. We propose LAAT, a novel Language-driven, Anchor-based Adversarial Training strategy, to improve the adversarial robustness in a zero-shot setting. LAAT uses a text encoder to obtain fixed anchors (normalized feature embeddings) of each category, then uses these anchors to perform adversarial training. The text encoder has the property that semantically similar categories can be mapped to neighboring anchors in the feature space. By leveraging this property, LAAT can make the image model adversarially robust on novel categories without any extra examples. Experimental results show that our method achieves impressive zero-shot adversarial performance, even surpassing the previous state-of-the-art adversarially robust one-shot methods in most attacking settings. When models are trained with LAAT on large datasets like ImageNet-1K, they can have substantial zero-shot adversarial robustness across several downstream datasets.


翻译:深神经网络很容易受到对抗性攻击。 我们考虑在零光图像分类设置中进行对抗性防御, 这一点很少被探讨, 因为对抗性防御和零光学习都具有挑战性。 我们提议LAAT, 一种新颖的语言驱动的、 以Anchor为基础的Aversarial 培训策略, 目的是在零光环境下提高对抗性强度。 LAAT 使用文本编码器来获取每一类的固定锚( 常规特征嵌入), 然后使用这些锚来进行对抗性训练。 文本编码器具有可以将语义相似的类别映射到功能空间的邻近锚的属性。 通过利用这一属性, LAAT 可以使图像模型在新类中充满对抗性强势, 没有任何额外的例子。 实验结果表明, 我们的方法在多数攻击环境中都取得了令人印象深刻的零光度对抗性对抗性一发效果, 甚至超过了先前的状态的对抗性强一分法方法。 当模型在像 Net-1K 这样的大型数据集上与LAAT 培训时, 它们可以在多个下游数据集上具有相当的零射速的对抗性对抗性对抗性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
38+阅读 · 2020年3月10日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员