项目名称: 强耦合自旋-玻色系统的量子临界性和量子相干性
项目编号: No.11474256
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 陈庆虎
作者单位: 浙江大学
项目金额: 85万元
中文摘要: 自旋-玻色模型描述二能级体系(量子比特)与连续玻色子库模拟的耗散环境的耦合系统。这种量子多体系统具有量子临界性和退相干等丰富的物理图像,可应用于随现代科学技术快速发展而层展的量子计算,量子器件甚至量子生物学等领域,近年来引起广泛的兴趣。本项目致力于发展研究这类模型的非微扰非变分的新方法,保留玻色子库的连续模式,自恰地给出量子客体和环境的微观量子力学描述,高精度地或者精度可系统控制地研究其量子临界性和量子相干性。 在实验可实现的强耦合区,研究布居数,量子纠缠, 量子失协的演化及其非马尔科夫效应。我们还将研究一些量子物理的基本问题,如自发辐射和量子Zeno 效应等。 并解释已有的实验,预计新的物理现象。本项目的研究内容既是当前量子信息和凝聚态物理的重要基础问题,又与量子计算和量子器件的应用紧密相关,因而具有重要的基础研究意义。
中文关键词: 开放量子系统;量子相变;退相干;固态量子计算
英文摘要: The spin-boson model describes two-level systems (qubits) interacting with adissipative environments modeled by continuum bosonic baths. There are currently considerable interests in these quantum many-body systems due to the rich physics of quantum criticality and decoherence, applied to the emerging field of quantum computations, quantum devices, and even quantum biology with the rapid progress of the modern science and technology. In this project, we will develop some non-perturbative, non-variational approaches without discretization of continuum bosonic mode. The microscopic quantum mechanical descriptions to the both quantum objects and environments are given self-consistently. The quantum criticality and coherence are studied within a high or systematically well-controlled accuracy. In the experimentally accessible strong coupling regime, we will study the evolution of population, quantum entanglement, and quantum discord. The relevant non-Markov effect will be also discussed. Some fundamental issues in quantum physics like spontaneously emissions and quantum Zeno effects will be also investigated. We will explain the existing experimental results and predict some new experimental phenomena. The proposal in the present research project is very fundamental in both quantum information and condensed matter physics, and is also closely related to the applications of quantum computation and quantum devices, therefore is very important in the fundamental research.
英文关键词: open quantum systems;quantum phase transitions;decoherence;solid quantum computing