Lifelong learning and adaptability are two defining aspects of biological agents. Modern reinforcement learning (RL) approaches have shown significant progress in solving complex tasks, however once training is concluded, the found solutions are typically static and incapable of adapting to new information or perturbations. While it is still not completely understood how biological brains learn and adapt so efficiently from experience, it is believed that synaptic plasticity plays a prominent role in this process. Inspired by this biological mechanism, we propose a search method that, instead of optimizing the weight parameters of neural networks directly, only searches for synapse-specific Hebbian learning rules that allow the network to continuously self-organize its weights during the lifetime of the agent. We demonstrate our approach on several reinforcement learning tasks with different sensory modalities and more than 450K trainable plasticity parameters. We find that starting from completely random weights, the discovered Hebbian rules enable an agent to navigate a dynamical 2D-pixel environment; likewise they allow a simulated 3D quadrupedal robot to learn how to walk while adapting to morphological damage not seen during training and in the absence of any explicit reward or error signal in less than 100 timesteps. Code is available at https://github.com/enajx/HebbianMetaLearning.


翻译:终身学习和适应能力是生物剂的两个决定性方面。现代强化学习(RL)方法在解决复杂任务方面显示出了显著的进展,然而,一旦培训结束,发现的解决办法通常是静态的,无法适应新的信息或扰动。虽然生物大脑如何从经验中如此有效地学习和适应,人们仍然不完全了解生物大脑是如何从经验中学习和适应的,但相信合成塑料在这一过程中起着突出的作用。我们建议一种搜索方法,这种方法不是直接优化神经网络的重量参数,而只是寻找突触特定的赫比亚学习规则,使网络能够在代理人的一生中不断将重量自我组织起来。我们展示了我们在若干强化学习任务上采用的方法,其感官方式不同,而且超过450K可训练的可塑性参数。我们发现,从完全随机的重量开始,所发现的赫比亚规则使得一个代理人能够驾载动态的 2D-像素环境;同样,它们允许模拟的3D四重机器人在适应变形损害的同时学会如何走路,而不会在训练期间看到,并且没有在100年的ASEM/M的明显标记错误。

0
下载
关闭预览

相关内容

【KDD2020】TAdaNet: 用于图增强元学习的任务自适应网络
专知会员服务
17+阅读 · 2020年9月21日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
136+阅读 · 2018年10月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员