The (non-uniform) sparsest cut problem is the following graph-partitioning problem: given a "supply" graph, and demands on pairs of vertices, delete some subset of supply edges to minimize the ratio of the supply edges cut to the total demand of the pairs separated by this deletion. Despite much effort, there are only a handful of nontrivial classes of supply graphs for which constant-factor approximations are known. We consider the problem for planar graphs, and give a $(2+\varepsilon)$-approximation algorithm that runs in quasipolynomial time. Our approach defines a new structural decomposition of an optimal solution using a "patching" primitive. We combine this decomposition with a Sherali-Adams-style linear programming relaxation of the problem, which we then round. This should be compared with the polynomial-time approximation algorithm of Rao (1999), which uses the metric linear programming relaxation and $\ell_1$-embeddings, and achieves an $O(\sqrt{\log n})$-approximation in polynomial time.
翻译:(非单形) 稀疏的分解问题是以下的图形分割问题: 给一个“ 供给” 图表, 以及对双脊椎的需求, 删去某些供应边缘子子组, 以最大限度地减少因此删除而分离的对口供应边缘与总需求的比例。 尽管付出了很大努力, 但只有少数非三类供应图, 其常量因素近似是已知的。 我们考虑平面图的问题, 并给出在准极性时间运行的 $( 2 ⁇ varepsilon) 和 $( $_ varepsilon) 匹配算法 。 我们的方法定义了使用“ 吸食” 原始方法将最佳解决方案的新的结构分解位置。 我们将这种分解与这一问题的 Sherali- Adams 式线性编程松动, 然后我们循环。 这应该与Rao 的多波时缩缩算算法(1999年) 比较, 该算法使用基准线性编程松和 $\_ 1 am- appedding comdings a $( sal) in.