We consider the problem of automated anomaly detection for building level heat load time series. An anomaly detection model must be applicable to a diverse group of buildings and provide robust results on heat load time series with low signal-to-noise ratios, several seasonalities, and significant exogenous effects. We propose to employ a probabilistic forecast combination approach based on an ensemble of deterministic forecasts in an anomaly detection scheme that classifies observed values based on their probability under a predictive distribution. We show empirically that forecast based anomaly detection provides improved accuracy when employing a forecast combination approach.


翻译:我们考虑了建筑高热负荷时间序列自动异常现象探测问题。异常现象检测模型必须适用于各类建筑物,并提供关于热负荷时间序列的可靠结果,其信号到噪音比率低、若干季节性和重大外生效应。我们提议在异常现象检测计划中采用基于共同确定性预测的概率预测组合法,根据预测分布下的概率对观察到的值进行分类。我们从经验上表明,预测异常现象检测方法在使用预测组合法时可以提高准确性。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
已删除
将门创投
6+阅读 · 2019年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关资讯
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
已删除
将门创投
6+阅读 · 2019年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员