Let $f(y|\theta), \; \theta \in \Omega$ be a parametric family, $\eta(\theta)$ a given function, and $G$ an unknown mixing distribution. It is desired to estimate $E_G (\eta(\theta))\equiv \eta_G$ based on independent observations $Y_1,...,Y_n$, where $Y_i \sim f(y|\theta_i)$, and $\theta_i \sim G$ are iid. We explore the Generalized Maximum Likelihood Estimators (GMLE) for this problem. Some basic properties and representations of those estimators are shown. In particular we suggest a new perspective, of the weak convergence result by Kiefer and Wolfowitz (1956), with implications to a corresponding setup in which $\theta_1,...,\theta_n$ are {\it fixed} parameters. We also relate the above problem, of estimating $\eta_G$, to non-parametric empirical Bayes estimation under a squared loss. Applications of GMLE to sampling problems are presented. The performance of the GMLE is demonstrated both in simulations and through a real data example.
翻译:让我们以$(y ⁇ theta)\G$,\;\;\;\theta\$在\Omega$中是一个参数家庭, 美元(theta) 美元(theta) 一个给定函数, 美元($GLE) 一个未知混合分布。 它希望根据独立观察Y_G(\eta)\equiv\eta_G$Y_1,...,...,Y_n$(Y_i)\sim f(y ⁇ theta_i)美元, 和$theta_i\sim G$( i) i\ sim G$)来估计美元( GMLE ) 。 我们为此探索了通用最大类似模拟器( GMLE ) ( GM ) 的一些基本属性和表达方式。 我们特别提出了一个新的观点, 即基费尔 和沃尔福茨( Wolfowitz)(1956) 的衰弱的趋同结果, 其相应的设置是$\_1,...,..., theta_n$(i) exta_i) g$(i) give im imate) g$(i) imate) imactalimal imal imate) imald destald subal destations subal subal subis subis subis subis subis