Riesz potentials are well known objects of study in the theory of singular integrals that have been the subject of recent, increased interest from the numerical analysis community due to their connections with fractional Laplace problems and proposed use in certain domain decomposition methods. While the L$^p$-mapping properties of Riesz potentials on flat geometries are well-established, comparable results on rougher geometries for Sobolev spaces are very scarce. In this article, we study the continuity properties of the surface Riesz potential generated by the $1/\sqrt{x}$ singular kernel on a polygonal domain $\Omega \subset \mathbb{R}^2$. We prove that this surface Riesz potential maps L$^{2}(\partial\Omega)$ into H$^{+1/2}(\partial\Omega)$. Our proof is based on a careful analysis of the Riesz potential in the neighbourhood of corners of the domain $\Omega$. The main tool we use for this corner analysis is the Mellin transform which can be seen as a counterpart of the Fourier transform that is adapted to corner geometries.


翻译:Riesz 潜能值是已知的理论研究对象,这些理论是最近才讨论的单一整体体理论,数字分析界对数值分析界的兴趣增加,因为它们与分层拉贝问题有关,并提议在某些域分解方法中使用。虽然Riesz 潜能值在平坦地貌上的L$p$映射功能是早已确立的,但索博列夫空间粗糙地貌的可比结果非常稀少。在本篇文章中,我们研究了1美元/\sqrt{x}美元在多边形域中生成的Riesz 潜能值的连续性。我们使用的主要工具是Mellin Riesz 潜在地图L$2}(部分=Omega) 的表面映射属性为H$1/2}(部分\Omega) 。我们的证据是基于对区域角落邻近地区的Riesz 潜能值进行仔细分析后得出的。我们用来进行这一角域域域域域域域域域的主要工具是Mellin 变形。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
14+阅读 · 2021年5月21日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月21日
VIP会员
相关资讯
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员