Semi-Supervised Object Detection (SSOD) has been successful in improving the performance of both R-CNN series and anchor-free detectors. However, one-stage anchor-based detectors lack the structure to generate high-quality or flexible pseudo labels, leading to serious inconsistency problems in SSOD. In this paper, we propose the Efficient Teacher framework for scalable and effective one-stage anchor-based SSOD training, consisting of Dense Detector, Pseudo Label Assigner, and Epoch Adaptor. Dense Detector is a baseline model that extends RetinaNet with dense sampling techniques inspired by YOLOv5. The Efficient Teacher framework introduces a novel pseudo label assignment mechanism, named Pseudo Label Assigner, which makes more refined use of pseudo labels from Dense Detector. Epoch Adaptor is a method that enables a stable and efficient end-to-end semi-supervised training schedule for Dense Detector. The Pseudo Label Assigner prevents the occurrence of bias caused by a large number of low-quality pseudo labels that may interfere with the Dense Detector during the student-teacher mutual learning mechanism, and the Epoch Adaptor utilizes domain and distribution adaptation to allow Dense Detector to learn globally distributed consistent features, making the training independent of the proportion of labeled data. Our experiments show that the Efficient Teacher framework achieves state-of-the-art results on VOC, COCO-standard, and COCO-additional using fewer FLOPs than previous methods. To the best of our knowledge, this is the first attempt to apply Semi-Supervised Object Detection to YOLOv5.
翻译:在本文件中,我们建议为基于一次性定位的可扩展和有效的一次性定位物体探测(SGRE)培训建立高效的教师框架,其中包括Desense 探测器、Pseudo Label Assigner和Epoch Restandor。 ense 检测器是一种基准模型,它以YOLOv5的密集取样技术扩展了RetinaNet。 高效的Sock-定位检测器缺乏生成高质量或灵活的假标签结构,导致裁军特别联大出现严重的不一致问题。在本文件中,我们建议为基于一次性定位的、可扩展和有效的单级定位培训提供高效的、基于一次性检测器、Pseudo Label Asigner 和Epoch Restandor 5 。 高级检测器是一种基准模型,它通过由大量低质量的模拟取样技术来扩展RetinaNet。 高效的Supina-Net, 高级教师框架引入了新版的假标签,从而在持续进行我们学生学习的Denseal-Develop Studal Dad 期间, 正在使用我们以往的Destal-Seral-de Stabital-deal Stabidustrade-de Stabisteild the Stabidustration 期间, 和Sild the Stoldal-deal Develildal Develildal-dal-to the Stildal-dal Stildal-dal-dal-dal-dal-daldaldal-dal-todal Statemental Statementaldal-dal-dal-todal-daldaldal-todal-todal Extra drodal-todal Statedal Statedal Statedal Extradal Extradal Stowdaldal Exal Exaldaldaldal Extradaldaldaldaldaldaldaldaldaldaldaldal Stowd 将我们上的当前的系统化的系统到我们上, Exdal-toal-todal-todal-todal-todal-todal-todal-tod 和