Small object detection requires the detection head to scan a large number of positions on image feature maps, which is extremely hard for computation- and energy-efficient lightweight generic detectors. To accurately detect small objects with limited computation, we propose a two-stage lightweight detection framework with extremely low computation complexity, termed as TinyDet. It enables high-resolution feature maps for dense anchoring to better cover small objects, proposes a sparsely-connected convolution for computation reduction, enhances the early stage features in the backbone, and addresses the feature misalignment problem for accurate small object detection. On the COCO benchmark, our TinyDet-M achieves 30.3 AP and 13.5 AP^s with only 991 MFLOPs, which is the first detector that has an AP over 30 with less than 1 GFLOPs; besides, TinyDet-S and TinyDet-L achieve promising performance under different computation limitation.
翻译:小目标检测需要检测头在图像特征映射上扫描大量位置,这对于计算和能量高效的轻量通用检测器来说非常困难。为了以有限的计算精确检测小目标,我们提出了一种具有极低运算复杂性的两级轻量检测框架,称为 TinyDet。它使高分辨率特征映射用于稠密锚定,以更好地覆盖小目标,提出了一种为了减少计算而进行的稀疏连接卷积,增强了主干网中的早期特征,并解决了特征不对齐问题,以便于精准小目标检测。在 COCO 基准测试中,我们的 TinyDet-M 仅使用991 MFLOPs 就实现了30.3 AP 和 13.5 AP^s,这是首个AP小于1 GFLOPs的检测器,同时 TinyDet-S 和 TinyDet-L 在不同计算限制下也实现了有前途的性能。