Given a heterogeneous Gaussian sequence model with unknown mean $\theta \in \mathbb R^d$ and known covariance matrix $\Sigma = \operatorname{diag}(\sigma_1^2,\dots, \sigma_d^2)$, we study the signal detection problem against sparse alternatives, for known sparsity $s$. Namely, we characterize how large $\epsilon^*>0$ should be, in order to distinguish with high probability the null hypothesis $\theta=0$ from the alternative composed of $s$-sparse vectors in $\mathbb R^d$, separated from $0$ in $L^t$ norm ($t \in [1,\infty]$) by at least $\epsilon^*$. We find minimax upper and lower bounds over the minimax separation radius $\epsilon^*$ and prove that they are always matching. We also derive the corresponding minimax tests achieving these bounds. Our results reveal new phase transitions regarding the behavior of $\epsilon^*$ with respect to the level of sparsity, to the $L^t$ metric, and to the heteroscedasticity profile of $\Sigma$. In the case of the Euclidean (i.e. $L^2$) separation, we bridge the remaining gaps in the literature.
翻译:在已知的协方差矩阵$\Sigma=\operatorname{diag}(\sigma_1^2,\dots,\sigma_d^2)$和未知均值$\theta\in\mathbb R^d$下,我们研究了对于稀疏假设的信号检测问题。即,对于已知稀疏度$s$,我们刻画了要区分空假设$\theta=0$和由$L^t(t\in[1,\infty])$范数中至少相距$\epsilon^*$的稀疏向量构成的备择假设的$\epsilon^*>0$应该多大。我们找到了$\epsilon^*$的极小值上限和下限,并证明它们总是匹配的。我们还推导了相应的最小化测试来实现这些边界。我们的结果揭示了关于$\epsilon^*$随稀疏性水平、$L^t$度量和$\Sigma$异方差性状的行为的新相变。在欧几里得距离(即$L^2$)的分离中,我们弥合了文献中剩余的差距。