Many Partial Differential Equations (PDEs) do not have analytical solution, and can only be solved by numerical methods. In this context, Physics-Informed Neural Networks (PINN) have become important in the last decades, since it uses a neural network and physical conditions to approximate any functions. This paper focuses on hypertuning of a PINN, used to solve a PDE. The behavior of the approximated solution when we change the learning rate or the activation function (sigmoid, hyperbolic tangent, GELU, ReLU and ELU) is here analyzed. A comparative study is done to determine the best characteristics in the problem, as well as to find a learning rate that allows fast and satisfactory learning. GELU and hyperbolic tangent activation functions exhibit better performance than other activation functions. A suitable choice of the learning rate results in higher accuracy and faster convergence.
翻译:许多部分差异方程式(PDEs)没有分析解决方案,只能用数字方法解决。在这方面,物理成形神经网络(PINN)在过去几十年中变得非常重要,因为它使用神经网络和物理条件来接近任何功能。本文侧重于超调用于解决PDE的 PINN 。当我们改变学习率或激活功能(像样、双曲线、GELU、RELU和ELU)时,近似解决方案的行为在这里进行了分析。进行了比较研究,以确定问题的最佳特征,并找到能够快速和令人满意地学习的学习率。 GELU和超紫外相色激活功能的表现优于其他激活功能。适当选择学习率的结果是更准确和更快的融合。