We introduce a new Eulerian simulation framework for liquid animation that leverages both finite element and finite volume methods. In contrast to previous methods where the whole simulation domain is discretized either using the finite volume method or finite element method, our method spatially merges them together using two types of discretization being tightly coupled on its seams while enforcing second order accurate boundary conditions at free surfaces. We achieve our formulation via a variational form using new shape functions specifically designed for this purpose. By enabling a mixture of the two methods, we can take advantage of the best of two worlds. For example, finite volume method (FVM) result in sparse linear systems; however, complexity is encountered when unstructured grids such as tetrahedral or Voronoi elements are used. Finite element method (FEM), on the other hand, result in comparably denser linear systems, but the complexity remains the same even if unstructured elements are chosen; thereby facilitating spatial adaptivity. In this paper, we propose to use FVM for the majority parts to retain the sparsity of linear systems and FEM for parts where the grid elements are allowed to be freely deformed. An example of this application is locally moving grids. We show that by adapting the local grid movement to an underlying nearly rigid motion, numerical diffusion is noticeably reduced; leading to better preservation of structural details such as sharp edges, thin sheets and spindles of liquids.
翻译:我们为液体动画引入一个新的 Eulerian 模拟框架, 利用有限的元素和有限的体积方法。 与以前采用的方法相比, 整个模拟域使用有限的体积法或有限的体积法将整个模拟域分开, 我们的方法在空间上将它们结合在一起, 使用两种类型的离散, 在接缝上密切结合, 在自由表面执行第二顺序准确的边界条件。 我们使用专门为此设计的新的形状功能, 通过变异形式实现我们的配方。 通过两种方法的混合, 我们可以利用两种方法的最好之处。 例如, 有限的体积法(FVM) 导致线性系统稀少; 但是, 当使用诸如四面体积或Voronoinoi 元素等非结构化的电网格时, 我们的方法会遇到复杂性。 使用FVMM( FVM) 来保留线性系统和FEM(FEM), 在使用非结构化的电网格网格中的某些部分, 在使用非结构化的电网格中, 则可以自由移动, 使电网状的电网状结构变色变到更精确的平, 。 样会以更精确的平到更精确的电路变。 。 。, 我们的电压 将这种变换到更 的电路变到 的电路变到更 的电路的电路的电路变到更到更 。