The position and the orientation of a rigid body object pushed by a robot on a planar surface are extremely difficult to predict. In this paper, the prediction problem is formulated as a disturbance observer design problem. The disturbance observer provides accurate estimation of the total sum of model errors and external disturbances acting on the object. From the estimation results, it is revealed that there is a strong linear relationship between the applied force or torque and the estimated disturbances. The proposed prediction algorithm has two phases: the identification & the prediction. During the identification phase, the linear relationship is identified from the observer output using a recursive least-square algorithm. In the prediction phase, the identified linear relationship is used with a force plan, which would be provided by a mission planner, to predict the position and the orientation of an object. The algorithm is tested for six different push experimental data available from the MIT MCube Lab. The proposed algorithm shows improved performance in reducing the prediction error compared to a simple correction algorithm.
翻译:由机器人在平面上推动的硬体物体的位置和方向极难预测。 在本文中, 预测问题被描述为扰动观察者设计问题。 扰动观察者对模型错误和在物体上行动的外部扰动的总和提供了准确的估计。 从估计结果中可以看出, 应用的力或力与估计扰动之间存在强烈的线性关系。 拟议的预测算法分为两个阶段: 识别和预测。 在识别阶段, 使用循环性最小平方算法从观察者输出中确定线性关系。 在预测阶段, 确定的线性关系与由任务规划者提供的武力计划使用, 以预测物体的位置和方向。 该算法根据MIT MCube实验室提供的六种不同的推式实验数据进行测试。 提议的算法显示, 与简单的校正算法相比, 在减少预测错误方面表现更好。