In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance.
翻译:在这项工作中,我们考虑在网上环境中提高模型预测控制动态模型(MPC)准确性的任务。虽然可以学习预测模型,并将其应用于基于模型的控制器,但这些模型往往是离线学习的。在这一离线设置中,首先收集培训数据,然后通过精心制定的培训程序学习预测模型。然而,由于该模型是离线学习的,因此不适应部署期间观察到的扰动或模型错误。为了改进模型和控制器的适应性,我们提议了一个在线动态学习框架,不断提高动态模型的准确性。我们采用了以知识为基础的神经普通差异方程式(KODE)作为动态模型,并使用转移学习所启发的技术来不断提高模型的准确性。我们用一个二次模型展示了我们框架的功效,并在模拟和物理实验中验证了框架。结果显示,我们的方法可以说明可能发生时间变化的扰动,同时保持良好的轨迹跟踪性。