We study problems with multiple missing covariates and partially observed responses. We develop a new framework to handle complex missing covariate scenarios via inverse probability weighting, regression adjustment, and a multiply-robust procedure. We apply our framework to three classical problems: the Cox model from survival analysis, missing response, and binary treatment from causal inference. We also discuss how to handle missing covariates in these scenarios, and develop associated identifying theories and asymptotic theories. We apply our procedure to simulations and an Alzheimer's disease dataset and obtain meaningful results.
翻译:我们研究多种缺失的共变和部分观察反应的问题。我们开发了一个新的框架,通过反概率加权、回归调整和倍增沸腾程序处理复杂的共变假设。我们将我们的框架应用于三个典型问题:生存分析的考克斯模型、缺失反应和因果推断的二元治疗。我们还讨论了如何处理这些假设中缺失的共变,并开发相关的识别理论和无药可治理论。我们运用我们的程序进行模拟和阿尔茨海默氏病数据集,并获得有意义的结果。