We propose a class of models based on Fisher's Linear Discriminant (FLD) in the context of domain adaptation. The class is the convex combination of two hypotheses: i) an average hypothesis representing previously seen source tasks and ii) a hypothesis trained on a new target task. For a particular generative setting we derive the optimal convex combination of the two models under 0-1 loss, propose a computable approximation, and study the effect of various parameter settings on the relative risks between the optimal hypothesis, hypothesis i), and hypothesis ii). We demonstrate the effectiveness of the proposed optimal classifier in the context of EEG- and ECG-based classification settings and argue that the optimal classifier can be computed without access to direct information from any of the individual source tasks. We conclude by discussing further applications, limitations, and possible future directions.
翻译:在领域适应方面,我们提出一组基于Fisher的线性差异模型(FLD)的模型,该类别是两种假设的组合:一是代表以往所见源任务的平均假设,二是接受过新目标任务培训的假设;二是针对一个特定的变种环境,我们从0-1损失下两种模型的最佳组合中得出0-1损失下的最佳组合,提出一个可计算近似值,并研究各种参数设置对最佳假设、假设一和假设二之间相对风险的影响。 我们在基于EEEG和ECG的分类设置中,展示了拟议的最佳分类员的有效性,并争论说,最佳分类员的计算方法不能从任何单个来源任务中获得直接信息。我们最后通过讨论进一步的应用、限制和可能的未来方向来结束。</s>