We consider the problem of computing stationary points in min-max optimization, with a particular focus on the special case of computing Nash equilibria in (two-)team zero-sum games. We first show that computing $\epsilon$-Nash equilibria in $3$-player \emph{adversarial} team games -- wherein a team of $2$ players competes against a \emph{single} adversary -- is \textsf{CLS}-complete, resolving the complexity of Nash equilibria in such settings. Our proof proceeds by reducing from \emph{symmetric} $\epsilon$-Nash equilibria in \emph{symmetric}, identical-payoff, two-player games, by suitably leveraging the adversarial player so as to enforce symmetry -- without disturbing the structure of the game. In particular, the class of instances we construct comprises solely polymatrix games, thereby also settling a question left open by Hollender, Maystre, and Nagarajan (2024). We also provide some further results concerning equilibrium computation in adversarial team games. Moreover, we establish that computing \emph{symmetric} (first-order) equilibria in \emph{symmetric} min-max optimization is \textsf{PPAD}-complete, even for quadratic functions. Building on this reduction, we further show that computing symmetric $\epsilon$-Nash equilibria in symmetric, $6$-player ($3$ vs. $3$) team zero-sum games is also \textsf{PPAD}-complete, even for $\epsilon = \text{poly}(1/n)$. As an immediate corollary, this precludes the existence of symmetric dynamics -- which includes many of the algorithms considered in the literature -- converging to stationary points. Finally, we prove that computing a \emph{non-symmetric} $\text{poly}(1/n)$-equilibrium in symmetric min-max optimization is \textsf{FNP}-hard.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员