In neural network's Literature, Hebbian learning traditionally refers to the procedure by which the Hopfield model and its generalizations store archetypes (i.e., definite patterns that are experienced just once to form the synaptic matrix). However, the term "Learning" in Machine Learning refers to the ability of the machine to extract features from the supplied dataset (e.g., made of blurred examples of these archetypes), in order to make its own representation of the unavailable archetypes. Here, given a sample of examples, we define a supervised learning protocol by which the Hopfield network can infer the archetypes, and we detect the correct control parameters (including size and quality of the dataset) to depict a phase diagram for the system performance. We also prove that, for structureless datasets, the Hopfield model equipped with this supervised learning rule is equivalent to a restricted Boltzmann machine and this suggests an optimal and interpretable training routine. Finally, this approach is generalized to structured datasets: we highlight a quasi-ultrametric organization (reminiscent of replica-symmetry-breaking) in the analyzed datasets and, consequently, we introduce an additional "replica hidden layer" for its (partial) disentanglement, which is shown to improve MNIST classification from 75% to 95%, and to offer a new perspective on deep architectures.


翻译:在神经网络文献中, Hebbian 学习传统是指Hopfield 模型及其常规化存储成型类型(即,仅仅经历过一次的确定模式以形成合成矩阵矩阵)的程序。然而,机器学习中的“学习”一词是指机器从所提供的数据集中提取特征的能力(例如,由这些拱形型的模糊例子制作的),以便自己代表无法使用的成型类型。在这里,我们根据实例样本,定义了受监督的学习协议,让Hopfield 网络能够通过它推断成考古类型,我们检测正确的控制参数(包括数据集的大小和质量)以描述系统性能的阶段图。我们还证明,对于无结构的数据集而言,配备了这种受监督学习规则的Hopfield模型相当于一个受限的Boltzmann机器,这表明一种最佳和可解释的培训常规。最后,这一方法被概括为结构化的数据集:我们强调一个准三角结构化组织(从复制机的缩略图、正对结构的缩略图解的缩图),我们从再显示一个数据结构显示的“25度结构”,在分析中显示的“再版结构化结构结构化的“显示” 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
25+阅读 · 2021年3月20日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年10月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
25+阅读 · 2021年3月20日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员