We introduce HATELEXICON, a lexicon of slurs and targets of hate speech for the countries of Brazil, Germany, India and Kenya, to aid training and interpretability of models. We demonstrate how our lexicon can be used to interpret model predictions, showing that models developed to classify extreme speech rely heavily on target words when making predictions. Further, we propose a method to aid shot selection for training in low-resource settings via HATELEXICON. In few-shot learning, the selection of shots is of paramount importance to model performance. In our work, we simulate a few-shot setting for German and Hindi, using HASOC data for training and the Multilingual HateCheck (MHC) as a benchmark. We show that selecting shots based on our lexicon leads to models performing better on MHC than models trained on shots sampled randomly. Thus, when given only a few training examples, using our lexicon to select shots containing more sociocultural information leads to better few-shot performance.


翻译:我们引入 HATELEXICON,这是一个包括巴西、德国、印度和肯尼亚国家的辱骂词汇和仇恨言论目标的词库,以帮助模型的训练和解释性。我们展示了如何使用我们的词库来解释模型预测,说明分类极端言语的模型在做出预测时在很大程度上依赖于目标词汇。此外,我们提出了一种方法,利用 HATELEXICON 来帮助在资源有限的情况下选择训练中的拍摄,针对德语和印地语进行了 Few-shot 学习的模拟,并使用 HASOC 数据进行了训练,使用 Multilingual HateCheck (MHC) 作为基准。我们表明,基于我们的词库选择拍摄会使模型在 MHC 上的表现优于随机抽取拍摄的模型。因此,在仅给出少量训练示例的情况下,利用我们的词库选择包含更多社会文化信息的拍摄会导致更好的 Few-shot 表现。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员