Multilingual machine translation (MMT), trained on a mixture of parallel and monolingual data, is key for improving translation in low-resource language pairs. However, the literature offers conflicting results on the performance of different methods. To resolve this, we examine how denoising autoencoding (DAE) and backtranslation (BT) impact MMT under different data conditions and model scales. Unlike prior studies, we use a realistic dataset of 100 directions and consider many domain combinations of monolingual and test data. We find that monolingual data generally helps MMT, but models are surprisingly brittle to domain mismatches, especially at smaller model scales. BT is beneficial when the parallel, monolingual, and test data sources are similar but can be detrimental otherwise, while DAE is less effective than previously reported. Next, we analyze the impact of scale (from 90M to 1.6B parameters) and find it is important for both methods, particularly DAE. As scale increases, DAE transitions from underperforming the parallel-only baseline at 90M to converging with BT performance at 1.6B, and even surpassing it in low-resource. These results offer new insights into how to best use monolingual data in MMT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

去噪自编码器背后的思想很简单. 为了迫使隐藏层单元发现更多鲁棒性好的特征, 以及阻止它学习恒等函数, 我们拿受损的输入来训练自编码器重构输入。
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月9日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员