Micron-scale robots (ubots) have recently shown great promise for emerging medical applications, and accurate control of ubots is a critical next step to deploying them in real systems. In this work, we develop the idea of a nonlinear mismatch controller to compensate for the mismatch between the disturbed unicycle model of a rolling ubot and trajectory data collected during an experiment. We exploit the differential flatness property of the rolling ubot model to generate a mapping from the desired state trajectory to nominal control actions. Due to model mismatch and parameter estimation error, the nominal control actions will not exactly reproduce the desired state trajectory. We employ a Gaussian Process (GP) to learn the model mismatch as a function of the desired control actions, and correct the nominal control actions using a least-squares optimization. We demonstrate the performance of our online learning algorithm in simulation, where we show that the model mismatch makes some desired states unreachable. Finally, we validate our approach in an experiment and show that the error metrics are reduced by up to 40%.
翻译:微缩机器人( ubots) 最近对新兴医疗应用表现出了巨大的希望, 准确控制ubots 是将它们部署到实际系统中的关键下一步。 在这项工作中, 我们开发了非线性错配控制器的想法, 以弥补在实验中收集的滚动乌博特和轨迹数据被破坏的单周期模型之间的不匹配。 我们利用滚动乌博特模型的差异平面性能来从理想的状态轨迹到名义控制动作进行映射。 由于模型错配和参数估计错误, 名义控制动作将无法完全复制理想的状态轨迹 。 我们使用一个高斯进程( GP) 来学习模型不匹配, 作为理想的控制动作的函数, 并使用最小比例优化来纠正名义控制动作 。 我们展示了我们在线学习算法在模拟中的性能, 显示模型错配方使某些想要的状态无法达到。 最后, 我们验证了我们的实验方法, 并显示错误指标会减少40% 。