Independent learners are learning agents that naively employ single-agent learning algorithms in multi-agent systems, intentionally ignoring the effect of other strategic agents present in their environment. This paper studies $N$-player mean-field games from a decentralized learning perspective with two primary objectives: (i) to study the convergence properties of independent learners, and (ii) to identify structural properties of $N$-player mean-field games that can guide algorithm design. Toward the first objective, we study the learning iterates obtained by independent learners, and we use recent results from POMDP theory to show that these iterates converge under mild conditions. In particular, we consider four information structures corresponding to information at each agent: (1) global state + local action; (2) local state, mean-field state + local action; (3) local state, compressed mean-field state + local action; (4) local state with local action. We present a notion of subjective equilibrium suitable for the analysis of independent learners. Toward the second objective, we study a family of dynamical systems on the set of joint policies. The dynamical systems under consideration are subject to a so-called $\epsilon$-satisficing condition: agents who are subjectively $\epsilon$-best-responding at a given joint policy do not change their policy. We establish a useful structural property relating to such dynamical systems. Finally, we develop an independent learning algorithm for $N$-player mean-field games that drives play to subjective $\epsilon$-equilibrium under self-play, exploiting the aforementioned structural properties to guarantee convergence of policies. Notably, we avoid requiring agents to follow the same policy (via a representative agent) during the learning process, which has been the typical approach in the existing literature on learning for mean-field games.


翻译:独立学习者都是在多试剂系统中天真地使用单一试剂学习算法的学习代理人,有意忽略其环境中其他战略代理人的影响。本文从分散学习的角度从分散学习的角度研究美元玩家平均场游戏,主要有两个目标:(一) 研究独立学习者的趋同特性,和(二) 确定能指导算法设计的美元玩家平均场游戏的结构属性。为了第一个目标,我们研究独立学习者获得的学习循环算法,我们使用POMDP理论的最新结果来显示这些循环在温和的条件下会聚在一起。特别是,我们考虑的四种与每个代理人的信息相对的信息结构结构结构结构结构结构结构结构结构:(1) 全球州+当地行动;(2) 当地国家,简化平均游戏状态+当地行动;(4) 当地行动。我们提出一个适合分析独立学习者分析的主观平衡概念。为了第二个目标,我们研究一套动态游戏系统在联合政策组合中,我们所考虑的动态游戏游戏游戏系统会以所谓的美元递归平价标准,我们所研究的自动变平价工具,我们所研究的是,我们所研究的自动变平价政策,我们所学会的游戏动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力动力, 正在 正在 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月23日
Arxiv
0+阅读 · 2022年10月22日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员