Stochastic versions of proximal methods have gained much attention in statistics and machine learning. These algorithms tend to admit simple, scalable forms, and enjoy numerical stability via implicit updates. In this work, we propose and analyze a stochastic version of the recently proposed proximal distance algorithm, a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter $\rho \rightarrow \infty$. By uncovering connections to related stochastic proximal methods and interpreting the penalty parameter as the learning rate, we justify heuristics used in practical manifestations of the proximal distance method, establishing their convergence guarantees for the first time. Moreover, we extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates regimes. We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.
翻译:在统计和机器学习中,预兆方法的托盘版本引起了人们的注意。这些算法倾向于接受简单、可缩放的形式,并通过隐含更新而享有数字稳定性。在这项工作中,我们提出和分析最近提议的近似远距算法的随机版本,这是一种迭代优化方法,将预期的有限估计问题恢复为罚款参数$\rho\rightrow\infty$。通过发现与相关随机近似方法的连接并将惩罚参数解释为学习率,我们证明在近似距离方法的实际表现中使用的超文本是有道理的,为第一次确立其趋同保证。此外,我们扩展了最近的理论工具,以确立有限的误差界限,并完整地描述汇合率制度。我们通过彻底的经验研究验证了我们的分析,同时也表明,拟议的方法不令人惊讶地超越了大众学习任务的批量版本。