In this article, we present the maximum weighted likelihood estimator (MWLE) for robust estimations of heavy-tail finite mixture models (FMM). This is motivated by the complex distributional phenomena of insurance claim severity data, where flexible density estimation tools such as FMM are needed but MLE often produces unstable tail estimates under FMM. Under some regularity conditions, MWLE is proved to be consistent and asymptotically normal. We further prove that the tail index obtained by MWLE is consistent even if the model is misspecified, justifying the robustness of MWLE in estimating the tail part of FMM. With a probabilistic interpretation for MWLE, Generalized Expectation-Maximization (GEM) algorithm is still applicable for efficient parameter estimations. We therefore present and compare two distinctive constructions of complete data to implement the GEM algorithm. By exemplifying our approach on two simulation studies and a real motor insurance data set, we show that comparing to MLE, MWLE produces more appropriate estimations on the tail part of FMM, without much sacrificing the flexibility of FMM in capturing the body part.
翻译:在本篇文章中,我们提出了用于对重尾量混合物模型进行可靠估算的最大加权概率估计值(MWLE),其动因是保险索赔严重程度数据分布现象复杂,需要弹性密度估计工具,如FMM,但MLE往往在FMM下产生不稳定的尾数估计。在某些常规条件下,MWLE被证明是一致和无干扰的。我们进一步证明,MWLE获得的尾数指数是一致的,即使该模型描述错误,也证明MWLE在估计FMM的尾部部分方面的强度。由于对MWLE的概率解释,通用预期-最大化(GEM)算法仍然适用于有效的参数估计。因此,我们提出并比较了两个不同的完整数据结构,以实施GEM算法。通过举例说明我们的两项模拟研究和一套真正的机能保险数据集,我们表明与MLE相比,MLE对F MMM的尾部部分得出更适当的估计值,但不会大大损害FMMMMM的体部分的灵活性。