In this paper, we establish the almost sure convergence of two-timescale stochastic gradient descent algorithms in continuous time under general noise and stability conditions, extending well known results in discrete time. We analyse algorithms with additive noise and those with non-additive noise. In the non-additive case, our analysis is carried out under the assumption that the noise is a continuous-time Markov process, controlled by the algorithm states. The algorithms we consider can be applied to a broad class of bilevel optimisation problems. We study one such problem in detail, namely, the problem of joint online parameter estimation and optimal sensor placement for a partially observed diffusion process. We demonstrate how this can be formulated as a bilevel optimisation problem, and propose a solution in the form of a continuous-time, two-timescale, stochastic gradient descent algorithm. Furthermore, under suitable conditions on the latent signal, the filter, and the filter derivatives, we establish almost sure convergence of the online parameter estimates and optimal sensor placements to the stationary points of the asymptotic log-likelihood and asymptotic filter covariance, respectively. We also provide numerical examples, illustrating the application of the proposed methodology to a partially observed Bene\v{s} equation, and a partially observed stochastic advection-diffusion equation.


翻译:在本文中,我们在一般的噪音和稳定条件下,在连续的时间内,建立几乎可以肯定的两种时间级随机梯度梯度下降算法的趋同性,在一般的噪音和稳定条件下,延长众所周知的结果;我们分析添加噪音的算法和不增加噪音的算法;在非补充的情况下,我们的分析假定噪音是一个持续时间马可夫过程,由算法国家控制;我们认为的算法可以适用于广泛的双级优化问题。我们详细研究一个这样的问题,即联合在线参数估计和为部分观测到的传播过程最佳感官安置的问题。我们展示了如何将这种算法发展成双级优化的问题,并以连续时间、两时级、相近性梯度下降算法的形式提出解决办法。此外,在潜在信号、过滤器和过滤器衍生物的适当条件下,我们几乎肯定地将在线参数估计和最佳感官安置与部分观测到的成象值点相趋同性传感器定位点相趋同性。我们展示了所观测到的成像性逻辑和抑制性消化方程法部分应用的方法。

0
下载
关闭预览

相关内容

随机梯度下降,按照数据生成分布抽取m个样本,通过计算他们梯度的平均值来更新梯度。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月19日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员