In this paper, the problem of state estimation, in the context of both filtering and smoothing, for nonlinear state-space models is considered. Due to the nonlinear nature of the models, the state estimation problem is generally intractable as it involves integrals of general nonlinear functions and the filtered and smoothed state distributions lack closed-form solutions. As such, it is common to approximate the state estimation problem. In this paper, we develop an assumed Gaussian solution based on variational inference, which offers the key advantage of a flexible, but principled, mechanism for approximating the required distributions. Our main contribution lies in a new formulation of the state estimation problem as an optimisation problem, which can then be solved using standard optimisation routines that employ exact first- and second-order derivatives. The resulting state estimation approach involves a minimal number of assumptions and applies directly to nonlinear systems with both Gaussian and non-Gaussian probabilistic models. The performance of our approach is demonstrated on several examples; a challenging scalar system, a model of a simple robotic system, and a target tracking problem using a von Mises-Fisher distribution and outperforms alternative assumed Gaussian approaches to state estimation.
翻译:在本文中,从过滤和平滑的角度考虑非线性国家空间模型的国家估算问题。由于模型的非线性性质,国家估算问题一般是棘手的,因为它涉及一般非线性功能的整体性,过滤和平滑的状态分布缺乏封闭式的解决办法。因此,通常可以估计国家估算问题。在本文中,我们根据变式推论制定了假设高斯式解决方案,它提供了灵活但有原则的近似所需分布分布机制的主要优势。我们的主要贡献在于将国家估算问题作为一种优化问题重新表述为国家估算问题,然后利用使用精确的一阶和二阶衍生物的标准优化常规来解决这一问题。由此产生的国家估算方法涉及最低数量的假设,直接适用于非线性系统,同时采用高斯和非高斯和非高斯的概率模型。我们的方法表现在几个实例中展示;具有挑战性的尺度系统、简单机器人系统模型和假设的升位方法,并使用假设的测位方法跟踪一个状态。