We study the problem of maximizing the probability that (i) an electric component or financial institution $X$ does not default before another component or institution $Y$ and (ii) that $X$ and $Y$ default jointly within the class of all random variables $X,Y$ with given univariate continuous distribution functions $F$ and $G$, respectively, and show that the maximization problems correspond to finding copulas maximizing the mass of the endograph $\Gamma^\leq(T)$ and the graph $\Gamma(T)$ of $T=G \circ F^-$, respectively. After providing simple, copula-based proofs for the existence of copulas attaining the two maxima $\overline{m}_T$ and $\overline{w}_T$ we generalize the obtained results to the case of general (not necessarily monotonic) transformations $T:[0,1] \rightarrow [0,1]$ and derive simple and easily calculable formulas for $\overline{m}_T$ and $\overline{w}_T$ involving the distribution function $F_T$ of $T$ (interpreted as random variable on $[0,1]$). The latter are then used to charac\-terize all non-decreasing transformations $T:[0,1] \rightarrow [0,1]$ for which $\overline{m}_T$ and $\overline{w}_T$ coincide. A strongly consistent estimator for the maximum probability that $X$ does not default before $Y$ is derived and proven to be asymptotically normal under very mild regularity conditions. Several examples and graphics illustrate the main results and falsify some seemingly natural conjectures.


翻译:我们研究以下问题的概率最大化问题:(一) 电子部件或金融机构$X$不是在另一部件或机构之前默认的,美元是美元;(二) 在所有随机变量的类别中,美元、美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,美元是美元,而美元是美元,我们研究的概率最大化问题与找到尽可能扩大末端阵列$\Gamma ⁇ leq(T)质量的合金问题相对应,美元(T)图$=G=美元,美元不是美元,美元不是美元。在提供简单、基于合影盘的证明之后,所有随机变量都达到双倍(美元)以上连续连续分配函数=$(不一定是单调),美元[0,1美元 右直线[1],以简单和易读的公式计算$(美元) 美元,而不是以美元。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员