We explain how to use Kolmogorov Superposition Theorem (KST) to overcome the curse of dimensionality in approximating multi-dimensional functions and learning multi-dimensional data sets by using neural networks of two hidden layers. That is, there is a class of functions called $K$-Lipschitz continuous in the sense that the K-outer function $g$ of $f$ is Lipschitz continuous and can be approximated by a ReLU network of two layers with $(2d+1)dn, dn$ widths to have an approximation order $O(d^2/n)$. In addition, we show that polynomials of high degree can be reproduced by using neural networks with activation function $\sigma_\ell(t)=(t_+)^\ell$ for $\ell\ge 2$ with multiple layers and appropriate widths. More layers of neural networks, the higher degree polynomials can be reproduced. Furthermore, we explain how many layers, weights, and neurons of neural networks are needed in order to reproduce high degree polynomials based on $\sigma_\ell$. Finally, we present a mathematical justification for image classification by using the convolutional neural network algorithm.


翻译:我们解释如何使用Kolmogorov Superposition Theorem (KST) 来通过两个隐藏层的神经网络来克服多维功能和学习多维数据集中维度的诅咒。 也就是说, K- Exerer 函数的“ $K$- Lipschitz ” 是连续的, K- Exer 函数为$g$g$f美元, 可以被一个双层( 2d+1) dn 的ReLU 网络所近似。 此外, 我们解释需要多少层、 重量和神经网络神经元的近似值 $O( d ⁇ 2/n) 。 此外, 我们显示, 使用具有激活功能的“ $\ gigma ⁇ ell( t) =( t ⁇ ) ” 的神经网络可以复制高维度的多维度多维度多维值多维值数据。 使用基于多个层和宽度的ReLU网络的网络, 需要多少层、 重量和神经网络的神经元, 来复制高维度的多维度 。 。 我们解释需要多少层、 倍的多维数级的神经网络, 。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月20日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员