We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time with respect to the logarithm of the size of the state space. This is the first speed-up of this type to be obtained over the seminal nearly-linear time algorithm of \v{S}tefankovi\v{c}, Vempala and Vigoda [JACM, 2009]. Our result also preserves the quadratic speed-up in precision and spectral gap achieved in previous work by exploiting the properties of quantum Markov chains. As an application, we obtain new polynomial improvements over the best-known algorithms for computing the partition function of the Ising model, and counting the number of $k$-colorings, matchings or independent sets of a graph. Our approach relies on developing new variants of the quantum phase and amplitude estimation algorithms that return nearly unbiased estimates with low variance and without destroying their initial quantum state. We extend these subroutines into a nearly unbiased quantum mean estimator that reduces the variance quadratically faster than the classical empirical mean. No such estimator was known to exist prior to our work. These properties, which are of general interest, lead to better convergence guarantees within the paradigm of simulated annealing for computing partition functions.
翻译:我们展示了一个新的量子算法, 用于在次线性时间估计 Gibbs 分区函数, 相对于国家空间大小的对数。 这是首次在 \ v{S}stefankovi\ v{c} 、 Vempala 和 Vigoda [JACM, 2009] 的 基本线性近线性时间算法中获得这种类型的加速。 我们的结果还保留了先前工作中通过利用 Markov 量子 链的特性而实现的精确度和光谱差距的二次速度。 作为应用程序, 我们获得了新的多元值改进, 超过了最著名的计算Ising 模型分区函数的已知算法, 并计算了 $- 彩色、 匹配或独立的图表数组。 我们的方法依赖于开发量级阶段和振荡估计算法的新变量, 以低差异恢复近乎公正的估计值, 并且不破坏最初的量性能状态。 我们将这些子线性值扩展为近乎公正的量值表示算法的测算法, 将差异降为比 古典性实验性实验平均值更快。 这些模型性 的计算结果的精准值在前的精度计算中是已知的。 这些模型中, 这些模型的精度计算法的精度值的精度值是存在的。 这些模型的精度的精准值。