Lipschitz Bound Estimation is an effective method of regularizing deep neural networks to make them robust against adversarial attacks. This is useful in a variety of applications ranging from reinforcement learning to autonomous systems. In this paper, we highlight the significant gap in obtaining a non-trivial Lipschitz bound certificate for Convolutional Neural Networks (CNNs) and empirically support it with extensive graphical analysis. We also show that unrolling Convolutional layers or Toeplitz matrices can be employed to convert Convolutional Neural Networks (CNNs) to a Fully Connected Network. Further, we propose a simple algorithm to show the existing 20x-50x gap in a particular data distribution between the actual lipschitz constant and the obtained tight bound. We also ran sets of thorough experiments on various network architectures and benchmark them on datasets like MNIST and CIFAR-10. All these proposals are supported by extensive testing, graphs, histograms and comparative analysis.
翻译:Lipschitz Bound Estimation 是一种使深神经网络正规化的有效方法,使这些网络对对抗性攻击具有很强的抗力。这对于从强化学习到自主系统等各种应用都有帮助。在本文中,我们强调在为进化神经网络获得非三联Lipschitz约束证书方面存在巨大差距,并用广泛的图形分析从经验上予以支持。我们还表明,可以使用卷发的革命层或托普利茨矩阵将进化神经网络转换成一个完全连接的网络。此外,我们提出一个简单的算法,在实际的唇相常数和获得的紧紧紧闭线之间的特定数据分布中显示现有的20x-50x差距。我们还就各种网络结构进行了一系列彻底的实验,并以诸如MNIST和CIFAR-10等数据集作为基准。所有这些提议都得到了广泛的测试、图表、直方图和比较分析的支持。