This paper focuses on camouflaged object detection (COD), which is a task to detect objects hidden in the background. Most of the current COD models aim to highlight the target object directly while outputting ambiguous camouflaged boundaries. On the other hand, the performance of the models considering edge information is not yet satisfactory. To this end, we propose a new framework that makes full use of multiple visual cues, i.e., saliency as well as edges, to refine the predicted camouflaged map. This framework consists of three key components, i.e., a pseudo-edge generator, a pseudo-map generator, and an uncertainty-aware refinement module. In particular, the pseudo-edge generator estimates the boundary that outputs the pseudo-edge label, and the conventional COD method serves as the pseudo-map generator that outputs the pseudo-map label. Then, we propose an uncertainty-based module to reduce the uncertainty and noise of such two pseudo labels, which takes both pseudo labels as input and outputs an edge-accurate camouflaged map. Experiments on various COD datasets demonstrate the effectiveness of our method with superior performance to the existing state-of-the-art methods.


翻译:本文侧重于隐蔽的物体探测(COD),这是探测隐藏在背景中的物体的一项任务。目前的COD模型大多旨在直接突出目标对象,同时输出模糊的伪装边界。 另一方面,考虑边缘信息的模型的性能尚不令人满意。 为此,我们提议一个新的框架,充分利用多个视觉提示,即突出和边缘,以完善预测的伪装地图。这个框架由三个关键组成部分组成,即:一个假置生成器、一个假映生成器和一个有不确定性的改进模块。特别是,伪置生成器估计输出伪格标签的边界,而常规的COD方法则作为生成伪图标签的假图生成器。然后,我们提出一个基于不确定性的模块,以减少这种两个假标签的不确定性和噪音,它既采用假标签作为输入,又输出一种边缘-隐蔽图。在各种COD数据集上进行实验,表明我们的方法与现有状态方法的高级性能。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
我这两年的目标检测
极市平台
8+阅读 · 2019年9月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
相关资讯
我这两年的目标检测
极市平台
8+阅读 · 2019年9月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
8+阅读 · 2021年7月15日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员