Computed Tomography (CT) enables detailed cross-sectional imaging but continues to face challenges in balancing reconstruction quality and computational efficiency. While deep learning-based methods have significantly improved image quality and noise reduction, they typically require large-scale training data and intensive computation. Recent advances in scene reconstruction, such as Neural Radiance Fields and 3D Gaussian Splatting, offer alternative perspectives but are not well-suited for direct volumetric CT reconstruction. In this work, we propose Discretized Gaussian Representation (DGR), a novel framework that reconstructs the 3D volume directly using a set of discretized Gaussian functions in an end-to-end manner. To further enhance efficiency, we introduce Fast Volume Reconstruction, a highly parallelized technique that aggregates Gaussian contributions into the voxel grid with minimal overhead. Extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and runtime performance across various CT reconstruction scenarios. Our code is publicly available at https://github.com/wskingdom/DGR.
翻译:暂无翻译