In this paper, a discontinuous Galerkin finite element method of Nitsche's version for the Steklov eigenvalue problem in linear elasticity is presented. The a priori error estimates are analyzed under a low regularity condition, and the robustness with respect to nearly incompressible materials (locking-free) is proven. Furthermore, some numerical experiments are reported to show the effectiveness and robustness of the proposed method.
翻译:本文介绍了尼切版本的尼采(Steklov eigenvalue)的线性弹性问题不连续的Galerkin定值元素法。先验误差估计数在正常性低的情况下分析,几乎无法压缩的材料(无锁)的坚固性得到证明。此外,据报告,一些数字实验显示了拟议方法的有效性和坚固性。