We establish Lipschitz stability properties for a class of inverse problems. In that class, the associated direct problem is formulated by an integral operator Am depending non-linearly on a parameter m and operating on a function u. In the inversion step both u and m are unknown but we are only interested in recovering m. We discuss examples of such inverse problems for the elasticity equation with applications to seismology and for the inverse scattering problem in electromagnetic theory. Assuming a few injectivity and regularity properties for Am, we prove that the inverse problem with a finite number of data points is solvable and that the solution is Lipschitz stable in the data. We show a reconstruction example illustrating the use of neural networks.
翻译:我们为某类反向问题建立了利普西茨稳定性特性。 在这一类中,相关的直接问题是由一个整体操作者Am在非线性地依赖参数 m 和运行函数 u 上形成的。 在反向步骤 u 和 m 都未知,但我们只有兴趣恢复 m。 我们讨论弹性方程式的反面问题, 其应用为地震学, 电磁理论的反向分散问题。 假设对 AM 有一些投射性和正向性特性, 我们证明, 数量有限的数据点的反面问题是可以溶解的, 数据中的解决方案是Lipschitz稳定。 我们展示了一个用来说明神经网络使用情况的重建例子。</s>