We investigate a macro-element variant of the hybridized discontinuous Galerkin (HDG) method, using patches of standard simplicial elements that can have non-matching interfaces. Coupled via the HDG technique, our method enables local refinement by uniform simplicial subdivision of each macro-element. By enforcing one spatial discretization for all macro-elements, we arrive at local problems per macro-element that are embarrassingly parallel, yet well balanced. Therefore, our macro-element variant scales efficiently to n-node clusters and can be tailored to available hardware by adjusting the local problem size to the capacity of a single node, while still using moderate polynomial orders such as quadratics or cubics. Increasing the local problem size means simultaneously decreasing, in relative terms, the global problem size, hence effectively limiting the proliferation of degrees of freedom. The global problem is solved via a matrix-free iterative technique that also heavily relies on macro-element local operations. We investigate and discuss the advantages and limitations of the macro-element HDG method via an advection-diffusion model problem.
翻译:我们使用不匹配界面的标准简化元素的补丁来调查混合不连续 Galerkin (HDG) 方法的宏观变量。 通过HDG 技术,我们的方法能够通过每个宏元素的统一简化分解来进行局部改进。 通过对所有宏元素实施一个空间分解,我们得出了每个宏元素的本地问题,这些分解是令人尴尬的平行的,但却是相当平衡的。因此,我们宏观元素的变差尺度能够有效地与正节组群相匹配,并且能够根据可用硬件来调整本地问题大小,使之适应单一节点的能力,同时仍然使用中度的多元顺序,如二次点或立方。增加局部问题规模意味着相对地同时减少全球问题的规模,从而有效地限制自由度的扩散。全球问题通过一个同样严重依赖宏观分解本地操作的无矩阵迭代技术来解决。我们调查并讨论通过抗分解模型问题,宏观带的HDG方法的优缺点和局限性。