In this note, we formulate a ``one-sided'' version of Wormald's differential equation method. In the standard ``two-sided'' method, one is given a family of random variables which evolve over time and which satisfy some conditions including a tight estimate of the expected change in each variable over one time step. These estimates for the expected one-step changes suggest that the variables ought to be close to the solution of a certain system of differential equations, and the standard method concludes that this is indeed the case. We give a result for the case where instead of a tight estimate for each variable's expected one-step change, we have only an upper bound. Our proof is very simple, and is flexible enough that if we instead assume tight estimates on the variables, then we recover the conclusion of the standard differential equation method.


翻译:在本说明中, 我们设计了一个“ 单方” 版本的Wormald 差异方程方法。 在标准“ 双方” 方法中, 给人一个随机变量的组合, 这些变量会随着时间变化而变化, 并且满足一些条件, 其中包括对每个变量在一段时期内的预期变化进行严格的估计。 这些对预期的一步骤变化的估算表明, 变量应该接近于某种差异方程体系的解决方案, 而标准方法得出结论, 情况确实如此。 我们给出了一个结果, 在一个案例中, 我们没有对每个变量预期的一步骤变化进行严格的估计, 我们只有一个上限。 我们的证据非常简单, 而且足够灵活, 如果我们对变量进行严格的估计, 那么我们就可以恢复标准差方程方法的结论 。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
12+阅读 · 2021年3月24日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
12+阅读 · 2021年3月24日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员