In this note, we formulate a ``one-sided'' version of Wormald's differential equation method. In the standard ``two-sided'' method, one is given a family of random variables which evolve over time and which satisfy some conditions including a tight estimate of the expected change in each variable over one time step. These estimates for the expected one-step changes suggest that the variables ought to be close to the solution of a certain system of differential equations, and the standard method concludes that this is indeed the case. We give a result for the case where instead of a tight estimate for each variable's expected one-step change, we have only an upper bound. Our proof is very simple, and is flexible enough that if we instead assume tight estimates on the variables, then we recover the conclusion of the standard differential equation method.
翻译:在本说明中, 我们设计了一个“ 单方” 版本的Wormald 差异方程方法。 在标准“ 双方” 方法中, 给人一个随机变量的组合, 这些变量会随着时间变化而变化, 并且满足一些条件, 其中包括对每个变量在一段时期内的预期变化进行严格的估计。 这些对预期的一步骤变化的估算表明, 变量应该接近于某种差异方程体系的解决方案, 而标准方法得出结论, 情况确实如此。 我们给出了一个结果, 在一个案例中, 我们没有对每个变量预期的一步骤变化进行严格的估计, 我们只有一个上限。 我们的证据非常简单, 而且足够灵活, 如果我们对变量进行严格的估计, 那么我们就可以恢复标准差方程方法的结论 。</s>