Flapping wings are a bio-inspired method to produce lift and thrust in aerial robots, leading to quiet and efficient motion. The advantages of this technology are safety and maneuverability, and physical interaction with the environment, humans, and animals. However, to enable substantial applications, these robots must perch and land. Despite recent progress in the perching field, flapping-wing vehicles, or ornithopters, are to this day unable to stop their flight on a branch. In this paper, we present a novel method that defines a process to reliably and autonomously land an ornithopter on a branch. This method describes the joint operation of a flapping-flight controller, a close-range correction system and a passive claw appendage. Flight is handled by a triple pitch-yaw-altitude controller and integrated body electronics, permitting perching at 3 m/s. The close-range correction system, with fast optical branch sensing compensates for position misalignment when landing. This is complemented by a passive bistable claw design can lock and hold 2 Nm of torque, grasp within 25 ms and can re-open thanks to an integrated tendon actuation. The perching method is supplemented by a four-step experimental development process which optimizes for a successful design. We validate this method with a 700 g ornithopter and demonstrate the first autonomous perching flight of a flapping-wing robot on a branch, a result replicated with a second robot. This work paves the way towards the application of flapping-wing robots for long-range missions, bird observation, manipulation, and outdoor flight.


翻译:扇形翅膀是一种生物激励的方法,用来在空中机器人中制造升降和推力,导致静静和高效运动。这种技术的优点是安全性和机动性,以及与环境、人类和动物的物理互动。然而,为了能够进行大量应用,这些机器人必须穿孔和降落。尽管在冲浪场方面最近取得了进展,但拍动翼车辆,或或机翼机翼机翼,至今还无法停止在树枝上的飞行。在本文中,我们提出了一个新颖的方法,该方法界定了在树枝上可靠和自主地降落一个树枝的过程。这个方法描述了一个拍动式的飞速控制器、一个近距离的校正系统和一个被动的爪子附附体的操作。 由一个三长的双向高射线控制器和一个综合的机体电子化控制器来操作。 近距离校正的校正系统,近距离的校正系统可以弥补着陆时位置上的偏差。 由被动的银爪子设计可以锁定和保持2毫米的铁杆,在25米之内,可以重新进行飞行,然后再打开一个方向, 感谢一个成功的系统,一个成功的飞行,一个成功的飞行将一个成功的飞行进行一个成功的飞行,一个成功的操作,一个成功的操作, 一个成功的系统,一个成功的操作,一个成功的飞行, 一个成功的飞行, 一个成功的飞行, 一个成功的飞行, 一个成功的操作一个成功的飞行, 一个成功的系统将一个成功的系统, 一个成功的飞行, 一个成功的飞行, 一个成功的系统, 一个成功的, 一个成功的系统, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个成功的, 一个循环的, 一个成功的, 一个成功的, 一个循环的, 的, 一个成功的, 一个成功的, 一个循环的, 的, 一个成功的, 一个成功的, 的, 的,

1
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
One-Shot Open-Set Skeleton-Based Action Recognition
Arxiv
0+阅读 · 2022年9月9日
VIP会员
相关VIP内容
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
106+阅读 · 2022年3月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员