Automatic recognition of disordered and elderly speech remains a highly challenging task to date due to the difficulty in collecting such data in large quantities. This paper explores a series of approaches to integrate domain adapted SSL pre-trained models into TDNN and Conformer ASR systems for dysarthric and elderly speech recognition: a) input feature fusion between standard acoustic frontends and domain adapted wav2vec2.0 speech representations; b) frame-level joint decoding of TDNN systems separately trained using standard acoustic features alone and with additional wav2vec2.0 features; and c) multi-pass decoding involving the TDNN/Conformer system outputs to be rescored using domain adapted wav2vec2.0 models. In addition, domain adapted wav2vec2.0 representations are utilized in acoustic-to-articulatory (A2A) inversion to construct multi-modal dysarthric and elderly speech recognition systems. Experiments conducted on the UASpeech dysarthric and DementiaBank Pitt elderly speech corpora suggest TDNN and Conformer ASR systems integrated domain adapted wav2vec2.0 models consistently outperform the standalone wav2vec2.0 models by statistically significant WER reductions of 8.22% and 3.43% absolute (26.71% and 15.88% relative) on the two tasks respectively. The lowest published WERs of 22.56% (52.53% on very low intelligibility, 39.09% on unseen words) and 18.17% are obtained on the UASpeech test set of 16 dysarthric speakers, and the DementiaBank Pitt test set respectively.


翻译:由于难以大量收集此类数据,本文探讨了一系列方法,将经领域调整的SSL预培训模型纳入经调整的STNN/Conde系统,以进行读音和老年人语音识别:(a) 标准声学前端和经调整的 wav2vec2.0 语音演示之间的输入特征融合;(b) 单独使用标准声学特征并附加 wav2vec2.0 功能单独培训的TDNNN系统框架级联合解码;以及(c) 涉及TDNN/Conex系统产出的多处解码,使用经调整的 STN和Confreed ASR系统Wv22.0 模型进行重新校正。此外,经调整的Wv2c2.0 显示,在声学至电解系统(A2A2A)中,用于构建多调调调调调调调和老年语音识别系统。在UASpeech Tudsath 和 Devakt US2 低调的言者中进行了实验。</s>

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2021年6月15日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员