We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable $X$ on observing another correlated random variable $Y$. The adversary can make multiple (say, $k$) guesses. The adversary's guessing strategy is assumed to minimize $\alpha$-loss, a class of tunable loss functions parameterized by $\alpha$. It has been shown before that this loss function captures well known loss functions including the exponential loss ($\alpha=1/2$), the log-loss ($\alpha=1$) and the $0$-$1$ loss ($\alpha=\infty$). We completely characterize the optimal adversarial strategy and the resulting expected $\alpha$-loss, thereby recovering known results for $\alpha=\infty$. We define an information leakage measure from the $k$-guesses setup and derive a condition under which the leakage is unchanged from a single guess.
翻译:我们考虑了一个猜测问题, 即对手在观察另一个相关的随机变量Y$时有兴趣知道实现一个离散随机变量X$的价值。 对手可以作出多重猜想( 例如, $k$ )。 对手的猜想策略假定是将损失最小化, 一种以$ alpha$为参数的可金枪鱼损失功能类别。 之前已经显示, 此损失函数包含众所周知的损失函数, 包括指数损失( $\ alpha=1/2美元)、 日志损失( $\pha=1美元) 和 美元-1美元损失( $\ alpha_ inty$ ) 。 我们完全确定了最佳的对抗策略和预期的 $\ alpha$ 损失, 从而恢复了已知的 $\ alpha_ inty$ 。 我们定义了从 $ gues 设置的信息泄漏量, 并得出一个条件, 即渗漏不会从一个猜测中改变 。