Cheung and Piliouras (2020) recently showed that two variants of the Multiplicative Weights Update method - OMWU and MWU - display opposite convergence properties depending on whether the game is zero-sum or cooperative. Inspired by this work and the recent literature on learning to optimize for single functions, we introduce a new framework for learning last-iterate convergence to Nash Equilibria in games, where the update rule's coefficients (learning rates) along a trajectory are learnt by a reinforcement learning policy that is conditioned on the nature of the game: \textit{the game signature}. We construct the latter using a new decomposition of two-player games into eight components corresponding to commutative projection operators, generalizing and unifying recent game concepts studied in the literature. We compare the performance of various update rules when their coefficients are learnt, and show that the RL policy is able to exploit the game signature across a wide range of game types. In doing so, we introduce CMWU, a new algorithm that extends consensus optimization to the constrained case, has local convergence guarantees for zero-sum bimatrix games, and show that it enjoys competitive performance on both zero-sum games with constant coefficients and across a spectrum of games when its coefficients are learnt.


翻译:张光朗(2020年)和张光朗(2020年)最近显示,根据游戏的零和或合作性,多倍 Weights更新方法的两个变体----OMWU和MWU----显示了两个不同的趋同特性,这取决于游戏是零和还是合作性。受这项工作和最近关于学习优化单一功能的文献的启发,我们引入了一个新的框架,学习游戏中Nash Equiliburia的最后一流趋同,在游戏中学习了更新规则的系数(学习率),沿轨迹学习了一种以游戏性质为条件的强化学习政策:\ textit{the game 签名}。我们用两个玩家游戏的新的分解组合组成八个组成部分来构建后者。我们比较了各种更新规则在学习系数时的表现,并表明RL政策能够将游戏的签名用于广泛的游戏类型。我们这样做时,我们引入了一种新的算法,即将共识优化扩展到受限制的情况,对零和双基游戏的组合游戏具有本地的保证,并且显示它具有竞争力的系数。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员