Although end-to-end (E2E) learning has led to promising performance on a variety of tasks, it is often impeded by hardware constraints (e.g., GPU memories) and is prone to overfitting. When it comes to video captioning, one of the most challenging benchmark tasks in computer vision and machine learning, those limitations of E2E learning are especially amplified by the fact that both the input videos and output captions are lengthy sequences. Indeed, state-of-the-art methods of video captioning process video frames by convolutional neural networks and generate captions by unrolling recurrent neural networks. If we connect them in an E2E manner, the resulting model is both memory-consuming and data-hungry, making it extremely hard to train. In this paper, we propose a multitask reinforcement learning approach to training an E2E video captioning model. The main idea is to mine and construct as many effective tasks (e.g., attributes, rewards, and the captions) as possible from the human captioned videos such that they can jointly regulate the search space of the E2E neural network, from which an E2E video captioning model can be found and generalized to the testing phase. To the best of our knowledge, this is the first video captioning model that is trained end-to-end from the raw video input to the caption output. Experimental results show that such a model outperforms existing ones to a large margin on two benchmark video captioning datasets.

5
下载
关闭预览

相关内容

视频描述生成(Video Caption),就是从视频中自动生成一段描述性文字

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

In recent years, the biggest advances in major Computer Vision tasks, such as object recognition, handwritten-digit identification, facial recognition, and many others., have all come through the use of Convolutional Neural Networks (CNNs). Similarly, in the domain of Natural Language Processing, Recurrent Neural Networks (RNNs), and Long Short Term Memory networks (LSTMs) in particular, have been crucial to some of the biggest breakthroughs in performance for tasks such as machine translation, part-of-speech tagging, sentiment analysis, and many others. These individual advances have greatly benefited tasks even at the intersection of NLP and Computer Vision, and inspired by this success, we studied some existing neural image captioning models that have proven to work well. In this work, we study some existing captioning models that provide near state-of-the-art performances, and try to enhance one such model. We also present a simple image captioning model that makes use of a CNN, an LSTM, and the beam search1 algorithm, and study its performance based on various qualitative and quantitative metrics.

0
4
下载
预览

It is well believed that video captioning is a fundamental but challenging task in both computer vision and artificial intelligence fields. The prevalent approach is to map an input video to a variable-length output sentence in a sequence to sequence manner via Recurrent Neural Network (RNN). Nevertheless, the training of RNN still suffers to some degree from vanishing/exploding gradient problem, making the optimization difficult. Moreover, the inherently recurrent dependency in RNN prevents parallelization within a sequence during training and therefore limits the computations. In this paper, we present a novel design --- Temporal Deformable Convolutional Encoder-Decoder Networks (dubbed as TDConvED) that fully employ convolutions in both encoder and decoder networks for video captioning. Technically, we exploit convolutional block structures that compute intermediate states of a fixed number of inputs and stack several blocks to capture long-term relationships. The structure in encoder is further equipped with temporal deformable convolution to enable free-form deformation of temporal sampling. Our model also capitalizes on temporal attention mechanism for sentence generation. Extensive experiments are conducted on both MSVD and MSR-VTT video captioning datasets, and superior results are reported when comparing to conventional RNN-based encoder-decoder techniques. More remarkably, TDConvED increases CIDEr-D performance from 58.8% to 67.2% on MSVD.

0
5
下载
预览

Building correspondences across different modalities, such as video and language, has recently become critical in many visual recognition applications, such as video captioning. Inspired by machine translation, recent models tackle this task using an encoder-decoder strategy. The (video) encoder is traditionally a Convolutional Neural Network (CNN), while the decoding (for language generation) is done using a Recurrent Neural Network (RNN). Current state-of-the-art methods, however, train encoder and decoder separately. CNNs are pretrained on object and/or action recognition tasks and used to encode video-level features. The decoder is then optimised on such static features to generate the video's description. This disjoint setup is arguably sub-optimal for input (video) to output (description) mapping. In this work, we propose to optimise both encoder and decoder simultaneously in an end-to-end fashion. In a two-stage training setting, we first initialise our architecture using pre-trained encoders and decoders -- then, the entire network is trained end-to-end in a fine-tuning stage to learn the most relevant features for video caption generation. In our experiments, we use GoogLeNet and Inception-ResNet-v2 as encoders and an original Soft-Attention (SA-) LSTM as a decoder. Analogously to gains observed in other computer vision problems, we show that end-to-end training significantly improves over the traditional, disjoint training process. We evaluate our End-to-End (EtENet) Networks on the Microsoft Research Video Description (MSVD) and the MSR Video to Text (MSR-VTT) benchmark datasets, showing how EtENet achieves state-of-the-art performance across the board.

0
5
下载
预览

Current image captioning approaches generate descriptions which lack specific information, such as named entities that are involved in the images. In this paper we propose a new task which aims to generate informative image captions, given images and hashtags as input. We propose a simple but effective approach to tackle this problem. We first train a convolutional neural networks - long short term memory networks (CNN-LSTM) model to generate a template caption based on the input image. Then we use a knowledge graph based collective inference algorithm to fill in the template with specific named entities retrieved via the hashtags. Experiments on a new benchmark dataset collected from Flickr show that our model generates news-style image descriptions with much richer information. Our model outperforms unimodal baselines significantly with various evaluation metrics.

0
4
下载
预览

Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. What's more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called "policy network" and "value network" to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.

0
7
下载
预览

We study active object tracking, where a tracker takes as input the visual observation (i.e., frame sequence) and produces the camera control signal (e.g., move forward, turn left, etc.). Conventional methods tackle the tracking and the camera control separately, which is challenging to tune jointly. It also incurs many human efforts for labeling and many expensive trial-and-errors in realworld. To address these issues, we propose, in this paper, an end-to-end solution via deep reinforcement learning, where a ConvNet-LSTM function approximator is adopted for the direct frame-toaction prediction. We further propose an environment augmentation technique and a customized reward function, which are crucial for a successful training. The tracker trained in simulators (ViZDoom, Unreal Engine) shows good generalization in the case of unseen object moving path, unseen object appearance, unseen background, and distracting object. It can restore tracking when occasionally losing the target. With the experiments over the VOT dataset, we also find that the tracking ability, obtained solely from simulators, can potentially transfer to real-world scenarios.

0
3
下载
预览

We describe a DNN for fine-grained action classification and video captioning. It gives state-of-the-art performance on the challenging Something-Something dataset, with over 220, 000 videos and 174 fine-grained actions. Classification and captioning on this dataset are challenging because of the subtle differences between actions, the use of thousands of different objects, and the diversity of captions penned by crowd actors. The model architecture shares features for classification and captioning, and is trained end-to-end. It performs much better than the existing classification benchmark for Something-Something, with impressive fine-grained results, and it yields a strong baseline on the new Something-Something captioning task. Our results reveal that there is a strong correlation between the degree of detail in the task and the ability of the learned features to transfer to other tasks.

0
7
下载
预览

Recently, much advance has been made in image captioning, and an encoder-decoder framework has achieved outstanding performance for this task. In this paper, we propose an extension of the encoder-decoder framework by adding a component called guiding network. The guiding network models the attribute properties of input images, and its output is leveraged to compose the input of the decoder at each time step. The guiding network can be plugged into the current encoder-decoder framework and trained in an end-to-end manner. Hence, the guiding vector can be adaptively learned according to the signal from the decoder, making itself to embed information from both image and language. Additionally, discriminative supervision can be employed to further improve the quality of guidance. The advantages of our proposed approach are verified by experiments carried out on the MS COCO dataset.

0
6
下载
预览

Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.

0
20
下载
预览

Accelerated by the tremendous increase in Internet bandwidth and storage space, video data has been generated, published and spread explosively, becoming an indispensable part of today's big data. In this paper, we focus on reviewing two lines of research aiming to stimulate the comprehension of videos with deep learning: video classification and video captioning. While video classification concentrates on automatically labeling video clips based on their semantic contents like human actions or complex events, video captioning attempts to generate a complete and natural sentence, enriching the single label as in video classification, to capture the most informative dynamics in videos. In addition, we also provide a review of popular benchmarks and competitions, which are critical for evaluating the technical progress of this vibrant field.

0
9
下载
预览
小贴士
相关论文
Neural Image Captioning
Elaina Tan,Lakshay Sharma
4+阅读 · 2019年7月2日
Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning
Jingwen Chen,Yingwei Pan,Yehao Li,Ting Yao,Hongyang Chao,Tao Mei
5+阅读 · 2019年5月3日
Silvio Olivastri,Gurkirt Singh,Fabio Cuzzolin
5+阅读 · 2019年4月4日
Di Lu,Spencer Whitehead,Lifu Huang,Heng Ji,Shih-Fu Chang
4+阅读 · 2018年11月7日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
Wenhan Luo,Peng Sun,Fangwei Zhong,Wei Liu,Tong Zhang,Yizhou Wang
3+阅读 · 2018年6月1日
Farzaneh Mahdisoltani,Guillaume Berger,Waseem Gharbieh,David Fleet,Roland Memisevic
7+阅读 · 2018年4月24日
Wenhao Jiang,Lin Ma,Xinpeng Chen,Hanwang Zhang,Wei Liu
6+阅读 · 2018年4月3日
Xin Wang,Wenhu Chen,Jiawei Wu,Yuan-Fang Wang,William Yang Wang
20+阅读 · 2018年3月29日
Zuxuan Wu,Ting Yao,Yanwei Fu,Yu-Gang Jiang
9+阅读 · 2018年2月22日
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
68+阅读 · 2020年5月14日
专知会员服务
207+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
76+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
47+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
16+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员