This paper presents a novel dataset aimed at detecting pedestrians' intentions as they approach an ego-vehicle. The dataset comprises synchronized multi-modal data, including fisheye camera feeds, lidar laser scans, ultrasonic sensor readings, and motion capture-based 3D body poses, collected across diverse real-world scenarios. Key contributions include detailed annotations of 3D body joint positions synchronized with fisheye camera images, as well as accurate 3D pedestrian positions extracted from lidar data, facilitating robust benchmarking for perception algorithms. We release a portion of the dataset along with a comprehensive benchmark suite, featuring evaluation metrics for accuracy, efficiency, and scalability on embedded systems. By addressing real-world challenges such as sensor occlusions, dynamic environments, and hardware constraints, this dataset offers a unique resource for developing and evaluating state-of-the-art algorithms in pedestrian detection, 3D pose estimation and 4D trajectory and intention prediction. Additionally, we provide baseline performance metrics using custom neural network architectures and suggest future research directions to encourage the adoption and enhancement of the dataset. This work aims to serve as a foundation for researchers seeking to advance the capabilities of intelligent vehicles in near-field scenarios.
翻译:暂无翻译