Efficient surrogate modelling is a key requirement for uncertainty quantification in data-driven scenarios. In this work, a novel approach of using Sparse Random Features for surrogate modelling in combination with self-supervised dimensionality reduction is described. The method is compared to other methods on synthetic and real data obtained from crashworthiness analyses. The results show a superiority of the here described approach over state of the art surrogate modelling techniques, Polynomial Chaos Expansions and Neural Networks.
翻译:高效代用模型是数据驱动情景中不确定性量化的关键要求。在这项工作中,介绍了一种新颖的方法,即结合自我监督的维度减少,将偏差随机特性用于代用模型,该方法与其他合成和真实数据方法进行比较,这些方法来自崩溃性分析。结果显示,此处所述方法优于现代代用模型技术、多元混乱扩展和神经网络的现状。