Predicting the performance and energy consumption of computing hardware is critical for many modern applications. This will inform procurement decisions, deployment decisions, and autonomic scaling. Existing approaches to understanding the performance of hardware largely focus around benchmarking -- leveraging standardised workloads which seek to be representative of an end-user's needs. Two key challenges are present; benchmark workloads may not be representative of an end-user's workload, and benchmark scores are not easily obtained for all hardware. Within this paper, we demonstrate the potential to build Deep Learning models to predict benchmark scores for unseen hardware. We undertake our evaluation with the openly available SPEC 2017 benchmark results. We evaluate three different networks, one fully-connected network along with two Convolutional Neural Networks (one bespoke and one ResNet inspired) and demonstrate impressive $R^2$ scores of 0.96, 0.98 and 0.94 respectively.
翻译:预测计算机硬件的性能和能源消耗对于许多现代应用来说至关重要。这将为采购决定、部署决定和自动升级提供依据。现有的了解硬件绩效的方法主要围绕基准进行。现有的方法主要是围绕基准来理解硬件绩效 -- -- 利用标准化的工作量,力求代表最终用户的需要。存在两个主要挑战;基准工作量可能不能代表最终用户的工作量,而且所有硬件的基准分数不易获得。在本文件中,我们展示了建立深学习模型以预测无形硬件基准分数的潜力。我们用公开可得的2017年SPEC基准结果进行评估。我们评估了三个不同的网络,一个完全连接的网络,两个革命神经网络(一个是发言的,一个是ResNet的灵感),并显示了惊人的2美元分数,分别为0.96、0.98和0.94美元。</s>