This paper considers malleable digital signatures, for situations where data is modified after it is signed. They can be used in applications where either the data can be modified (collaborative work), or the data must be modified (redactable and content extraction signatures) or we need to know which parts of the data have been modified (data forensics). A \new{classical} digital signature is valid for a message only if the signature is authentic and not even one bit of the message has been modified. We propose a general framework of modification tolerant signature schemes (MTSS), which can provide either location only or both location and correction, for modifications in a signed message divided into $n$ blocks. This general scheme uses a set of allowed modifications that must be specified. We present an instantiation of MTSS with a tolerance level of $d$, indicating modifications can appear in any set of up to $d$ message blocks. This tolerance level $d$ is needed in practice for parametrizing and controlling the growth of the signature size with respect to the number $n$ of blocks; using combinatorial group testing (CGT) the signature has size $O(d^2 \log n)$ which is close to the \new{best known} lower bound \new{of $\Omega(\frac{d^2}{\log d} (\log n))$}. There has been work in this very same direction using CGT by Goodrich et al. (ACNS 2005) and Idalino et al. (IPL 2015). Our work differs from theirs in that in one scheme we extend these ideas to include corrections of modification with provable security, and in another variation of the scheme we go in the opposite direction and guarantee privacy for redactable signatures, in this case preventing any leakage of redacted information.
翻译:本文认为数据在签名后被修改的情况是可变的数字签名。 它们可以用于修改数据( 合作工作) 的应用中, 数据可以修改( 修改和内容提取签名), 或者数据必须修改( 修改和内容提取签名 ), 或者我们需要知道数据中哪些部分已经修改( 数据法证 ) 。 只有当签名是真实的, 甚至没有修改过信件中的任何部分时, 数字签名才对信息有效 。 我们提议了一个修改可变缓度签名计划( MTSS) 的一般框架, 它只能提供位置, 或同时提供位置和校正, 用于将签名分割成美元块的修改 。 这个通用方案使用一套允许的修改( 修改和修改) 。 我们显示的是, 在任何设置中, 最多为 $d$ 的信息区块中, 需要用美元 。 在操作中, 匹配和控制签名与 美元 美元 和 美元 数字 的增缩组测试 ( C GGTT) 中, 使用一个已知的 RE=\\\\ ligro) 系统, 。