We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method. Our main contribution is a redesigned hybrid solver [Larios-C\'ardenas and Gibou, J. Comput. Phys. (May 2022), 10.1016/j.jcp.2022.111291] that relies on numerical schemes to enable machine-learning operations on demand. In particular, our routine features double predicting to harness curvature symmetry invariance in favor of precision and stability. The core of this solver is a multilayer perceptron trained on circular- and sinusoidal-interface samples. Its role is to quantify the error in numerical curvature approximations and emit corrected estimates for select grid vertices along the free boundary. These corrections arise in response to preprocessed context level-set, curvature, and gradient data. To promote neural capacity, we have adopted sample negative-curvature normalization, reorientation, and reflection-based augmentation. In the same manner, our system incorporates dimensionality reduction, well-balancedness, and regularization to minimize outlying effects. Our training approach is likewise scalable across mesh sizes. For this purpose, we have introduced dimensionless parametrization and probabilistic subsampling during data production. Together, all these elements have improved the accuracy and efficiency of curvature calculations around under-resolved regions. In most experiments, our strategy has outperformed the numerical baseline at twice the number of redistancing steps while requiring only a fraction of the cost.


翻译:我们提出一个基于误差的建模战略,以接近水平定置方法的二维曲度。我们的主要贡献是重新设计混合求解器[Larios-C\'ardenas和Gibou,J.Compuut.Phys.(2022年5月),10.1016/j.jcp.2022.111291],它依赖数字方法,以便能够根据需要进行机器学习作业。特别是,我们的例行特征是双重预测,以便利用曲线对称性偏差,以利精确和稳定。这个求解器的核心是多层感应器,在循环和正弦化的中间样本中,它的作用是量化数字曲度近似近似偏差的误差,以及将自由边界沿线某些网格脊椎的校正估计值量化。这些校正是针对预先处理的环境水平设置、曲线和梯度数据的反应。为了提高神经性能力,我们采用了偏向性平整的模度、调整和反反反反反反反镜放大的方法。同样,我们的系统也以最精确的计算方法来,在我们的递校正的递校正的精度的精度战略上,在我们的精度上,在我们的精度上,我们做了的精度上, 的精度的精度的精度的精度的精度的精度上,在我们的精度的精度的精度上,我们的精度上,我们的精度的精度的精度上,我们的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度上,我们的精度上, 的精度上, 的精度的精度的精度是的精度的精度上,我们的精度上, 的精度上, 的精度上,我们的精度上, 的精度是细的精度上,我们的精度的精度上,我们的精度的精度的精度的精度的精度的精度的精度的精度的精度上,我们的精度的精度上的精度

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月2日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员