Making each modality in multi-modal data contribute is of vital importance to learning a versatile multi-modal model. Existing methods, however, are often dominated by one or few of modalities during model training, resulting in sub-optimal performance. In this paper, we refer to this problem as modality bias and attempt to study it in the context of multi-modal classification systematically and comprehensively. After stepping into several empirical analysis, we recognize that one modality affects the model prediction more just because this modality has a spurious correlation with instance labels. In order to primarily facilitate the evaluation on the modality bias problem, we construct two datasets respectively for the colored digit recognition and video action recognition tasks in line with the Out-of-Distribution (OoD) protocol. Collaborating with the benchmarks in the visual question answering task, we empirically justify the performance degradation of the existing methods on these OoD datasets, which serves as evidence to justify the modality bias learning. In addition, to overcome this problem, we propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned according to the training set statistics. Thereafter, we apply this method on eight baselines in total to test its effectiveness. From the results on four datasets regarding the above three tasks, our method yields remarkable performance improvements compared with the baselines, demonstrating its superiority on reducing the modality bias problem.


翻译:在多模式数据中,每个模式都有助于多模式数据,对于学习多功能多模式模式至关重要。但现有方法往往在模式培训期间以一种或几种模式为主,导致业绩低于最佳水平。在本文中,我们将此问题称为模式偏向,并试图在多模式分类背景下对其进行系统和全面的研究。在进行若干经验分析后,我们认识到,一种模式更能影响模型预测,因为模式与实例标签有虚假的关联。为了主要便利对模式偏向问题的评价,我们根据《差异数字识别和视频行动识别协议》,分别为彩色数字识别和视频行动识别任务建立了两套数据集。与视觉问题回答任务的基准合作,我们从经验上证明这些OOD数据集现有方法的绩效退化,作为模式偏差学习的证明。此外,为了克服这一问题,我们建议了一种插件和套件损失功能功能功能功能功能,据此,每个标签的特征空间从培训定值中适应到培训定值的统计。此后,我们运用了这四种基准方法,用以测试我们衡量其业绩基准的四项基准。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
20+阅读 · 2020年6月8日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员