Nonparametric estimation for semilinear SPDEs, namely stochastic reaction-diffusion equations in one space dimension, is studied. We consider observations of the solution field on a discrete grid in time and space with infill asymptotics in both coordinates. Firstly, based on a precise analysis of the H\"older regularity of the solution process and its nonlinear component, we show that the asymptotic properties of diffusivity and volatility estimators derived from realized quadratic variations in the linear setup generalize to the semilinear SPDE. In particular, we obtain a rate-optimal joint estimator of the two parameters. Secondly, we derive a nonparametric estimator for the reaction function specifying the underlying equation. The estimate is chosen from a finite-dimensional function space based on a simple least squares criterion. Oracle inequalities with respect to both the empirical and usual $L^2$-risk provide conditions for the estimator to achieve the usual nonparametric rate of convergence. Adaptivity is provided via model selection.


翻译:对半线性SPDEs的非参数估计,即一个空间维度的随机反应反扩散方程式,进行了研究。我们考虑在时间和空间的离散网格上对溶液场的观测,两个坐标座标都有填充无症状。首先,根据对溶液过程及其非线性组成部分的H\"older规律性及其非线性成分的精确分析,我们表明,从对半线性SPDE的宽度设置中已实现的四分变量变化中得出的diffusiversity和挥发性估测仪的无症状性能特性,为估算者提供了达到通常的非对称趋同率的条件。第二,我们从反应函数中得出一个非对称估计值,以说明基本方程。根据一个简单的最小方位标准从一个有限维功能空间中选择这一估计值。与经验性和通常的 $L%2 风险有关的奥克拉特不平等性为估算者提供了达到通常的非对称趋同率的条件。通过模型选择提供适应性。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年10月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年10月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员